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ON THE RATE OF PROPAGATION OF SMALL PERTURBATIONS IN POROUS MEDIA* 

S.I. SAFARGULOVA and N.N. SMIRNOV 

The properties of a system of equations which describes the two-speed 
motion of a porous medium are investigated. The type of system of 
equations is defined as a function of the rate of slippage of the phases 
and the difference in the stresses in the phases. The domains of 
variation of the decisive parameters for which the system of equations 
describing the dynamics of a two-phase porous medium remains hyperbolic 
are established. 

For the correct formulation of the problem of the two-speed flow of a compressible 
porous medium it is necessary to determine the type of corresponding system of differntial 
equations. There are a considerable number of papers dealing with similar kinds of 
investigations for various systems of equations describing the motion of multiphase media. 
The equations of continuity and the equations of motion are written out for each phase: an 
assumption concerning barotropicity is used for the closure of the system and the 
non-hyperbolic nature of such a system of equations is indicated for real values of the 
difference in the speeds of the phases /l, 21. It has been shown /3/ that, in the more 
general case for the complete system of equations which describes the flow of compressible 
phases using a model containing the same pressure for the different phases, the system of 
differential equations is not hyperbolic for real values of the magnitude of slippage. The 
propagation of small perturbations in a mixture with a barotropic gas phase has been 
investigated: it was noted that the non-hyperbolic character and instability of the small 
perturbations which are typical of the system of differential equations are attributable to 
an insufficiently complete description of the interphase interactions within the disperse 
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phase /4/. When different pressures, which determined independently for each phase, are 
introduced, the system of equations becomes hyperbolic /5/. Inequalities are obtained which 
define the type of system in the space of the physical variables in the case of an incompress- 
ible solid phase and the overall pressure for the two phases*. f*Kazakov Yu.V., Fedorov A.V. 
and Fomin V.M., Investigation of the structures of isothermal shock waves and the calculation 
of the dispersion of a cloud of a gaseous suspension, Preprint 8, Inst. Teor. i Prikladn. 
Mekbaniki, Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1986.) 

The system of equations describing the one-dimensional, non-stationary flow of a two- 
phase porous mixture when there is no interphase mass exchange has the form /6/ 

Here, pie,utre, and ai are the true density, velocity, internal energy and mean bulk 
concentration of the i-th phase (i = 1,2), p1 is the pressure in the gas, p2 is the longi- 
tudinal stress in the condensed phase taken with the opposite sign and F and Q characterize 
the interphase friction and heat exchange. 

We supplement the system with the equations of state for the gas pI = pl”RT, and for 
the solid phase under the assumption that there is a planar deformed state locally: 

r;, = ep, - bp,, s,= ape - bp, 

a = (1 - v) (1 + 4/K 
(21 

b = v (1 f vi/E, pi = pPai 

Here, E,, is the strain in the transverse direction and & is the strain in a longi- 
tudinal direction and the deformations are positive upon compression. E and Y are Young's 
m0aufus and Poisson's ratio, respectively. 

After some reduction the system of Eqs.flf can be reduced to the form 

In addition to this, we note that the following differential relationship exists between 
+.? and a,: 

while the kinematic relationship between the strain in the longtudinal direction err and the 
velocity uz is expressed by the formula 

Let us now find the characteristic directions in the 5, ti plane of the system of aif- 
ferential equations. 

When account is taken of the equation of continuity of the gas phase and relationship 
(6f, Eq.(4) reduces to the form 

T -=_ Ff=p-W) Q 
1 dt 

-- 
PI h (8) 
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By taking account of Eq.(7), the energy equation for the solid phase can be written in 

the following form: 

T dzsp _ Q 
'dt ~1 

So, the equations for the internal energy of each phase yield two characteristic 
directions which are determined by the velocity fields of the first and second phases and 
which correspond to the transmission of thermal perturbations. 

On integrating Eq.(6) and taking account of the inequalities (2), we obtain the dependence 

a, = i (P,,P,) (f (PI, PA = 1 - %a exP (bP, - Vl)) (I(J) 

When account is taken of the equation of continuity for the solid phase, Eq.(7) yields 
the integral 

Pz~ = g (Pl, PA (g (PI, PA = ppDy elrP ((pl + PA (a - b))) (11) 

Hence, the remaining characteristic directions are the characteristic directions of 

system (3). 
Let us now transform this system and write it in terms of the unknown functions pI,p2,u, 

and ~2. In order to do this, we will introduce the velocity of sound in the "pure" gas fll 

and make use of the equation of state of the gas p1 = ploRT,. 
In the new variables, system (3) will have the form 

System (12) can be written in matrix form 

z,++z,g ==I, w = {p,, p2, U1r %I 

By using the standard procedure /7/ for finding the characteristic directions dxldt = h 

of system (12), we obtain that h must be an eigenvalue of the linear operator z,-'Z,, that 

is, it must satisfy the following characteristic equation: 

Before proceeding to the investigation of the resulting system in general form, let us 

consider several special limiting cases. 
10. Let the bulk concentration of the gas, zl, be solely dependent on pl, that is, 

aflap* = 0, de,&+, = 0. The relationships (2) then take the form E,,= apl,e,, = ap, - bill. 
In this case, we find the following characteristic directions: 

Hence, in the given special case, system (12) is always hyperbolic. It can be seen 

from relationships (14) that perturbations will propagate throughout the solid phase with 
the velocity of longitudinal waves in a thin plate and, throughout the gas phase, at the 

velocity of the perturbations in "a tube with elastic walls", that is, in a tube with a cross- 
sectional area which depends on the pressure within it. The relationships for h,,, correspond 

to the solution obtained in /a, 9/. 
2". Let al=fa(p4, that is, let us consider the special case when pz>,)p, so that it 
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may be assumed that iWapl= O,ae,,lap,= 0. This case corresponds to the model equations of state 
of a condensed phase (k-phase) pi= q(a) which are used in /5/. Then, exx and %I and, 
consequently, pn are solely functions of pn. For example, eTI. = --bps, a,, = apa. 

In this case, the characteristic directions are: 

It is seen that weak perturbations in the gas propagate at the speed of sound 81 while, 
in the k-phase, they propagate at a speed which differs from the velocity in plates by the 
magnitude of a small parameter which depends on PS. The non-linearity which arises is due 
to the allowance for the additional dependence of the cross-sectional area of the k-phase on 
the stress in it: UP = h (pd. 

3". Let a,- 0. It is clear that, for small a,, the quantity %T is bounded and, in the 
limit when ~~-0, the transverse strain also tends to zero (% -O), and the relation between 

PI and PI takes the form PZ= apJb. To determine the strain %, we have the relationship 
ax= = (a - b'la) pa. 

In this case the system of differential Eqs.(3) is simplified considerably and we obtain 
four real characteristic directions 

which is indicative of the hyperbolic nature of the system of differential equations. It is 
seen that, when the bulk concentration of the gas phase is reduced, weak perturbations will 
propagate in the solid phase at the velocity of the longitudinal waves in an isotropic, 
unbounded, linearly elastic medium. 

40. Let us consider the case when a* - 0. The strains and stresses are connected by 
relationship (2). The characteristic directions are then determined by formulae which differ 
from (15) in that p2 is replaced by ~a-PI. 

Hence, when the bulk content of the k-phase is reduced compared with the gas phase for 
a fixed overall area of the tube, weak perturbations will propagate throughout the gas at 
the gas speed of sound in the gas, Al,, while they will propagate throughout the solid at a 
speed close to the velocity of a longitudinal wave in a thin plate. At a difference in the 
pressures between the phases of up to 1000 atmospheres, the second term of the radicand for 
AS,4 is two orders of magnitude smaller than the first. 

We will now investigate system (12) in the general case when dl = f(pl, pi) (10) and the 
link between the stresses and strains is specified by relationship (2). In order to determine 
the roots of the characteristic Eq.(13), we introduce the notation U1 -h =X, U2 -h = Y, 
us - u1 = Au = Y-X. For each value of the relative rate of slippage of the phases, the 
solution of Eq.(13) can be represented as a solution of the system. 

Y=+-A-$$ Y=X+Au (17 

The real solutions in the X, Y plane correspond to the points of intersection of the line 
Y = X + Au and a fourth order curve which is symmetrical with respect to the coordinate 
axes and is specified by the first equation of system (17). 

We will now transform the radicand to a more convenient form for investigation. We 
obtain 

x, = I/b’/(ao + a*) 9 x, = I/b’/(a, + d/c) 

where a,, b’,a’ and a" are positive coefficients (when -f 
sign. 

For a solution of the characteristic equation to exist, 
should be non-negative. 

Let us now consider the case when c <O,Ap (--l/b. If, 

<v <'/,) and c is of alternating 

it is necessary that the radicand 

besides this, a, i- a'/c>O, that 
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is, 

Ap<-$-9 
(19) 

then the graph of curve (18) has the form shown in Fig.1. It is seen that, for any value of 
the rate of slippage of the phases, AU, the line Y =X fduhas two intersections with the 
curve (la), that is, the characteristic equation has two roots. Hence, the initial system of 
equations is not hyperbolic for the pressure drops being considered, Ap (19). 

Fig.1 Fig.2 

If a, + al/c (0, that is, 

.-- 
then the graph of curve (18) has the form shown in Fig.2 (Yr =I/cXr/(eX&). 

It is seen that, at large values of the difference in the velocities, Au, and in the 
case when condition (20) is satisfied, the system of equations becomes hyperbolic. However, 
this difference in velocities jAuj=Y-X must be greater than 

that is, greater than the speed of sound in the k-phase, which is unrealizable in practical 
problems. Hence, the system is also not hyperbolic in this case for real values of the 
magnitude of AU. 

When Ap = --l/b, the curve in Fig.2 is supplemented with the point X = 0, Y = 0 and, 
in the case of the single velocity model (Au =0), the characteristic equation has four real 
roots, two of which are multiple. 

Let us now consider Ap > -l/b (c> 0). If, at the same time, a'lc > an, that is, 
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then the graphical depiction of the characteristic curve (18) corresponds to that shown in 
Fig.3 (Y,= $fczb The point at the origin of coordinates is transformed into an expanding 
oval as Ap increases. St is seen that, for real values of the difference between the 
velocities of the phases which are smaller than the speed of sound in the k-phase. 

system (17) has four different real solutions which suggests that the initial system of 
equations is hyerbolic over the range of variation of Ap being considered. Inequality (21), 
which expresses the condition of hyerbolicity of the system for real values'of the magnitude 
of the slippage, can be written in the form 

-&<AP< Viz - (1 + vf (I- 2%) 

Next, when a'/c<a", that is, when 

AP > - $ + (,,z fbz, b ( AP > 
VE 

(i + V) (I- 2v) ) 
the graph of the characteristic curve takes the form shown in Fig.4. At the same time, as 
the difference between the pressures in the phases, Ap, increases, the curves in Fig.4 become 
ever more distant from the asymptotes such that, in the case of a small (real) difference 
between the velocities of the phases, system (12) again becomes non-hyperbolic. For suf- 
ficiently large values of the magnitude of the slippage, four points of intersection of the 
curve (18) with the line Y := X + AZI, are preserved, that is, the system remains hyperbolic. 

In the case when 

Ap== (*+v;;-Zv) ($::;d) 

the curves in Fig.4 are converted into two pairs of asymptotes. At the same time, the 
characteristic equation for any values of AEL has four real roots. 
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